

Cryogenic Charge and Phonon Detectors: SuperCDMS +

Noah Kurinsky New Directions in the Search for Light Dark Matter Particles June 5, 2019

Athermal Sensors for NR and ER Dark Matter

- R&D has produced 3+ detectors with ~3-4 eV energy resolution
 - Large-area photodetector PD2, ~10g @ ~4 eV
 - Square-cm HV detectors, 0.25-1g @ ~3 eV
 - Fabricated 4g detectors designed for O(1 eV), yet to be tested
- Resolutions achieved by multiple routes; optimization is different
 - NR detectors minimize energy resolution, aim for low-Tc. R&D led by Matt Pyle at UC Berkeley (see talk yesterday)
 - HV detectors minimize charge resolution; aim for high efficiency at higher Tc for larger dynamic range
 - Both based on QET designs which achieve >20% energy efficiency; this is the largest single improvement

Charge Detection via NTL Effect

- In any recoil event, all energy eventually returns to the phonon system
 - Prompt phonons produced by interaction with nuclei
 - Indirect-gap phonons produced by charge carriers reaching band minima
 - Recombination phonons produced when charge carriers drop back below the band-gap
- Phonons are also produced when charges are drifted in an electric field; makes sense by energy conservation alone
- Total phonon energy is initial recoil energy plus Luke phonon energy, as shown at right

$$E_{phonon} = E_{recoil} + V * n_{eh}$$

$$= E_{recoil} \left[1 + V * \left(\frac{y(E_{recoil})}{\varepsilon_{eh}} \right) \right]$$

 Athermal phonons collected in superconducting aluminum fins and channeled into Tungsten TES, effectively decoupling crystal heat capacity from calorimeter (TES) heat capacity

Romani et. al. 2017 (https://arxiv.org/abs/1710.09335)

Charge Detection via NTL Effect

Recent Progress: Edge-Dominated Leakage

Partition

ArXiv:1903.06517

- New prototypes demonstrate position dependence in the non-quantized data hinted at during HVeV Run 1
- Nearly contact-free biasing scheme isolates contact along the crystal edge, preventing charge tunneling through most of the high-voltage face
- Surface events have a distinct pulse shape and can be removed using a cut in the pulse-shape plane.
- Non-quantized leakage is dominant at high radius; 95% of non-quantized events removed by 50% radial cut efficiency.
 80% of quantized events removed by the same cut

Scaling Up in Mass

Scaling Up in Mass

Faster Signal

Scaling Up in Mass

Faster Signal

Sets Operating Voltage for NTL Single-Charge Readout

NEXUS: Underground Experimental Site for R&D

NEXUS Si/Ge Experimental Timeline

- Now (Animal ADR Demonstrator): 1 gram
 - 1 gram, 4 eV resolution (20 eV threshold)
 - 0.05 electron-hole pair resolution (<1 e-h threshold)
 - 4 eV to 4 keV in energy
 - DM search with 1 gram-week
- Late Summer 2019: 10 grams,
 - 2-4 ~4g detectors
 - 4 eV resolution (20 eV threshold),
 - 0.05 electron-hole pair resolution (<1 e-h threshold)
 - 4 eV to 40 keV in energy
 - DM search with 1 gram-month
- Fall 2019-Winter 2020: 30-100 grams,
 - 4 eV resolution (20 eV threshold)
 - 0.01 electron-hole pair resolution
 - 4 eV to 40 keV in energy
 - DM search with 1-10 gram-year (~kg day)
- Late 2020 Early 2021: 10 kg payload
 - <20 eV threshold
 - Up to 60 keV in energy
 - 0.01 electron-hole pair resolution
 - DM search/neutrino physics with 1 kg-year of exposure

NEXUS Si/Ge Experimental Timeline

- Now (Animal ADR Demonstrator): 1 gram
 - 1 gram, 4 eV resolution (20 eV threshold)
 - 0.05 electron-hole pair resolution (<1 e-h threshold)
 - 4 eV to 4 keV in energy
 - DM search with 1 gram-week

Late Summer 2019: 10 grams,

- 2-4 ~4g detectors
- 4 eV resolution (20 eV threshold),
- 0.05 electron-hole pair resolution (<1 e-h threshold)
- 4 eV to 40 keV in energy
- DM search with 1 gram-month
- Fall 2019-Winter 2020: 30-100 grams,
 - 4 eV resolution (20 eV threshold)
 - 0.01 electron-hole pair resolution
 - 4 eV to 40 keV in energy
 - DM search with 1-10 gram-year (~kg day)
- Late 2020 Early 2021: 10 kg payload
 - <20 eV threshold
 - Up to 60 keV in energy
 - 0.01 electron-hole pair resolution
 - DM search/neutrino physics with 1 kg-year of exposure

Leakage R&D

 $(\sim 1.3K)$

Larger Crystals or Multiplexing

Diamond Targets

- Diamond, Ge, and Si have similar phonon characteristics, but diamond has higher energy, longer-lived phonon modes
- Phonons are 3x faster than in Si, 4x faster than in Ge
- Phonon lifetime is limited by crystal size to much higher temperatures - larger crystals have less phonon down-conversion
- It is easier to improve resolution by simply making the TES volume smaller, since the phonons can be allowed to bounce around the crystal more without down-conversion
- Here we consider ~30-300 mg crystals in order to minimize phonon collection time, such that the readout in TES dominated at all critical temperatures and phonon sensor geometries

$$\sigma_e \ge \frac{\sqrt{4k_bT_c^2C}}{\sqrt{5}\epsilon} \approx \frac{1}{\epsilon}\sqrt{\frac{2k_b\gamma T_c^3V_{\mathrm{TES}}}{(\mathcal{L}-1)}}$$

Kurinsky, Yu, Hochberg, Cabrera (1901.07569)

Near-Term ERDM Scattering Reach

- With measured leakage current and better light tightness, relic density can be probed at NEXUS (~100 dru) with ~100g payload
 - gram-month begins to probe relic density at current levels

13

Near-Term ERDM Scattering Reach

- With measured leakage current and better light tightness, relic density can be probed at NEXUS (~100 dru) with ~100g payload
 - gram-month begins to probe relic density at current levels
- Leakage current improvement improves reach across mass range
 - 100x improvement significantly improves overall exposure reach
 - Various ways to improve surface leakage, work already ongoing to experiment with new insulating layers

NR & Absorption Reach (ST)

- Short-term: gram-day exposure at 1 eV threshold (about 10x improvement over current) probes large uncovered parameter space
 - Absorption down to band-gap also probed, depending on backgrounds
 - Lighter targets provide lower mass reach but lower exposure; diamond more competitive with He than Si for NR

NR & Absorption Reach (LT)

- Short-term: gram-day exposure at 1 eV threshold (about 10x improvement over current) probes large uncovered parameter space
 - Absorption down to band-gap also probed, depending on backgrounds
 - Lighter targets provide lower mass reach but lower exposure; diamond more competitive with He than Si
- Significant R&D needed to achieve 'ultimate' limit of cryogenic readout
 - Compare to ~40 meV resolution in yesterday's slides from MP
 - SuperCDMS has a path to ultra-low resolution, but this is still speculative

Backup

Aside: History and Economics

- Diamond have been used as ionization-chamber style charge detectors since the 70's
- The main barrier historically was cost, purity, and form factor
 - The lack of man-made diamonds meant groups normally had to rely on a source with access to natural diamond, and select the few diamonds with the best performance
- In the last 5 years, the cost of high-quality labgrown diamond has dropped from ~\$6000/carat to \$2000/carat, and recently gem-gem-quality diamonds could be purchased by consumers for \$800/carat
- This is driven by the electronics industry, which is aiming to use diamond both as a heat sink and as a semiconductor for high-high-power, hightemperature transistors
- Diamonds have also come into use as a potential storage medium for quantum computing

Quantum / Radiation Detectors Single Crystal 145-500-0390 30 mg

\$2,150.00

A Battle Over Diamonds: Made by Nature or in a Lab?

By Paul Sullivan

Feb. 9, 2018

The New York Times

200 mg

1 CARAT \$800

